Copied to
clipboard

G = C24.71D4order 128 = 27

26th non-split extension by C24 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C24.71D4, C22:C8:8C4, C4:C4.299D4, C4.138(C4xD4), C4.3(C22:Q8), C2.2(D4:D4), (C22xC4).50Q8, C23.29(C4:C4), (C22xC4).681D4, C23.759(C2xD4), C22.4Q16:34C2, C2.2(D4.7D4), C22.79C22wrC2, C22.48(C4oD8), C22.69(C8:C22), (C22xC8).312C22, (C23xC4).250C22, C23.7Q8.14C2, (C22xC4).1351C23, C2.2(C23.20D4), C2.2(C23.19D4), C22.58(C8.C22), C2.10(C23.8Q8), C2.12(M4(2):C4), C2.11(C23.25D4), C22.83(C22.D4), (C2xC2.D8):3C2, (C2xC4.Q8):16C2, (C2xC4).91(C4:C4), (C2xC8).106(C2xC4), (C2xC4).981(C2xD4), (C2xC4).201(C2xQ8), (C2xC4:C4).53C22, (C2xC22:C8).33C2, C22.111(C2xC4:C4), (C2xC4).747(C4oD4), (C22xC4).273(C2xC4), (C2xC4).550(C22xC4), (C2xC42:C2).19C2, SmallGroup(128,586)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — C24.71D4
C1C2C22C23C22xC4C23xC4C2xC42:C2 — C24.71D4
C1C2C2xC4 — C24.71D4
C1C23C23xC4 — C24.71D4
C1C2C2C22xC4 — C24.71D4

Generators and relations for C24.71D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=c, eae-1=ab=ba, ac=ca, ad=da, faf-1=abd, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=de3 >

Subgroups: 308 in 158 conjugacy classes, 64 normal (44 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2xC4, C2xC4, C2xC4, C23, C23, C23, C42, C22:C4, C4:C4, C4:C4, C2xC8, C2xC8, C22xC4, C22xC4, C22xC4, C24, C2.C42, C22:C8, C4.Q8, C2.D8, C2xC42, C2xC22:C4, C2xC4:C4, C42:C2, C22xC8, C23xC4, C22.4Q16, C23.7Q8, C2xC22:C8, C2xC4.Q8, C2xC2.D8, C2xC42:C2, C24.71D4
Quotients: C1, C2, C4, C22, C2xC4, D4, Q8, C23, C4:C4, C22xC4, C2xD4, C2xQ8, C4oD4, C2xC4:C4, C4xD4, C22wrC2, C22:Q8, C22.D4, C4oD8, C8:C22, C8.C22, C23.8Q8, C23.25D4, M4(2):C4, D4:D4, D4.7D4, C23.19D4, C23.20D4, C24.71D4

Smallest permutation representation of C24.71D4
On 64 points
Generators in S64
(2 24)(4 18)(6 20)(8 22)(9 63)(11 57)(13 59)(15 61)(25 46)(26 30)(27 48)(28 32)(29 42)(31 44)(33 37)(34 50)(35 39)(36 52)(38 54)(40 56)(41 45)(43 47)(49 53)(51 55)
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 63)(10 64)(11 57)(12 58)(13 59)(14 60)(15 61)(16 62)(25 42)(26 43)(27 44)(28 45)(29 46)(30 47)(31 48)(32 41)(33 53)(34 54)(35 55)(36 56)(37 49)(38 50)(39 51)(40 52)
(1 14)(2 15)(3 16)(4 9)(5 10)(6 11)(7 12)(8 13)(17 62)(18 63)(19 64)(20 57)(21 58)(22 59)(23 60)(24 61)(25 38)(26 39)(27 40)(28 33)(29 34)(30 35)(31 36)(32 37)(41 49)(42 50)(43 51)(44 52)(45 53)(46 54)(47 55)(48 56)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 36 14 31)(2 35 15 30)(3 34 16 29)(4 33 9 28)(5 40 10 27)(6 39 11 26)(7 38 12 25)(8 37 13 32)(17 54 62 46)(18 53 63 45)(19 52 64 44)(20 51 57 43)(21 50 58 42)(22 49 59 41)(23 56 60 48)(24 55 61 47)

G:=sub<Sym(64)| (2,24)(4,18)(6,20)(8,22)(9,63)(11,57)(13,59)(15,61)(25,46)(26,30)(27,48)(28,32)(29,42)(31,44)(33,37)(34,50)(35,39)(36,52)(38,54)(40,56)(41,45)(43,47)(49,53)(51,55), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,63)(10,64)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41)(33,53)(34,54)(35,55)(36,56)(37,49)(38,50)(39,51)(40,52), (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,62)(18,63)(19,64)(20,57)(21,58)(22,59)(23,60)(24,61)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37)(41,49)(42,50)(43,51)(44,52)(45,53)(46,54)(47,55)(48,56), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,36,14,31)(2,35,15,30)(3,34,16,29)(4,33,9,28)(5,40,10,27)(6,39,11,26)(7,38,12,25)(8,37,13,32)(17,54,62,46)(18,53,63,45)(19,52,64,44)(20,51,57,43)(21,50,58,42)(22,49,59,41)(23,56,60,48)(24,55,61,47)>;

G:=Group( (2,24)(4,18)(6,20)(8,22)(9,63)(11,57)(13,59)(15,61)(25,46)(26,30)(27,48)(28,32)(29,42)(31,44)(33,37)(34,50)(35,39)(36,52)(38,54)(40,56)(41,45)(43,47)(49,53)(51,55), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,63)(10,64)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(25,42)(26,43)(27,44)(28,45)(29,46)(30,47)(31,48)(32,41)(33,53)(34,54)(35,55)(36,56)(37,49)(38,50)(39,51)(40,52), (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,62)(18,63)(19,64)(20,57)(21,58)(22,59)(23,60)(24,61)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37)(41,49)(42,50)(43,51)(44,52)(45,53)(46,54)(47,55)(48,56), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,36,14,31)(2,35,15,30)(3,34,16,29)(4,33,9,28)(5,40,10,27)(6,39,11,26)(7,38,12,25)(8,37,13,32)(17,54,62,46)(18,53,63,45)(19,52,64,44)(20,51,57,43)(21,50,58,42)(22,49,59,41)(23,56,60,48)(24,55,61,47) );

G=PermutationGroup([[(2,24),(4,18),(6,20),(8,22),(9,63),(11,57),(13,59),(15,61),(25,46),(26,30),(27,48),(28,32),(29,42),(31,44),(33,37),(34,50),(35,39),(36,52),(38,54),(40,56),(41,45),(43,47),(49,53),(51,55)], [(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,63),(10,64),(11,57),(12,58),(13,59),(14,60),(15,61),(16,62),(25,42),(26,43),(27,44),(28,45),(29,46),(30,47),(31,48),(32,41),(33,53),(34,54),(35,55),(36,56),(37,49),(38,50),(39,51),(40,52)], [(1,14),(2,15),(3,16),(4,9),(5,10),(6,11),(7,12),(8,13),(17,62),(18,63),(19,64),(20,57),(21,58),(22,59),(23,60),(24,61),(25,38),(26,39),(27,40),(28,33),(29,34),(30,35),(31,36),(32,37),(41,49),(42,50),(43,51),(44,52),(45,53),(46,54),(47,55),(48,56)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,36,14,31),(2,35,15,30),(3,34,16,29),(4,33,9,28),(5,40,10,27),(6,39,11,26),(7,38,12,25),(8,37,13,32),(17,54,62,46),(18,53,63,45),(19,52,64,44),(20,51,57,43),(21,50,58,42),(22,49,59,41),(23,56,60,48),(24,55,61,47)]])

38 conjugacy classes

class 1 2A···2G2H2I4A···4H4I···4P4Q4R4S4T8A···8H
order12···2224···44···444448···8
size11···1442···24···488884···4

38 irreducible representations

dim1111111122222244
type+++++++++-++-
imageC1C2C2C2C2C2C2C4D4D4Q8D4C4oD4C4oD8C8:C22C8.C22
kernelC24.71D4C22.4Q16C23.7Q8C2xC22:C8C2xC4.Q8C2xC2.D8C2xC42:C2C22:C8C4:C4C22xC4C22xC4C24C2xC4C22C22C22
# reps1211111841214811

Matrix representation of C24.71D4 in GL6(F17)

100000
0160000
001000
000100
000010
0000016
,
100000
010000
001000
000100
0000160
0000016
,
1600000
0160000
0016000
0001600
000010
000001
,
1600000
0160000
001000
000100
000010
000001
,
900000
020000
002900
0071500
0000016
0000160
,
0150000
900000
008200
0010900
000001
000010

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[9,0,0,0,0,0,0,2,0,0,0,0,0,0,2,7,0,0,0,0,9,15,0,0,0,0,0,0,0,16,0,0,0,0,16,0],[0,9,0,0,0,0,15,0,0,0,0,0,0,0,8,10,0,0,0,0,2,9,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C24.71D4 in GAP, Magma, Sage, TeX

C_2^4._{71}D_4
% in TeX

G:=Group("C2^4.71D4");
// GroupNames label

G:=SmallGroup(128,586);
// by ID

G=gap.SmallGroup(128,586);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,232,422,352,2019,1018,248]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=c,e*a*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,f*a*f^-1=a*b*d,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=d*e^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<